勾股定理的教案优秀7篇

佚名 47 0

勾股定理的教案优秀7篇

勾股定理指的是直角三角形的两条直角边的平方和等于斜边的平方。那么你对勾股定理了解多少呢?的小编精心为您带来了勾股定理的教案优秀7篇,如果对您有一些参考与帮助,请分享给最好的朋友。

勾股定理 篇一

课题:“勾股定理”第一课时

内容:教材分析、教学过程设计、设计说明

一、 教材分析

(一)教材所处的地位

这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)根据课程标准,本课的教学目标是:

1、 能说出勾股定理的内容。

2、 会初步运用勾股定理进行简单的计算和实际运用。

3、 在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

4、 通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(三)本课的教学重点:探索勾股定理

本课的教学难点:以直角三角形为边的正方形面积的计算。

二、教法与学法分析:

教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

三、 教学过程设计

(一)提出问题:

首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?” 的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。

(二)实验操作:

1、投影课本图1—1,图1—2的有关直角三角形问题,让学生计算正方形a,b,c的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将c划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形a,b,c的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形c的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。

3、给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。

(三)归纳验证:

1、归纳 通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。

2、验证 为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过测量、计算来验证结论的正确性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育。

(四)问题解决:

让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。

(五)课堂小结:

主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。

(六)布置作业:

课本p6习题1.1 1,2,3,4一方面巩固勾股定理,另一方面进一步体会定理与实际生活的联系。另外,补充一道开放题。

四、 设计说明

1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的研究,得出结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。

3、关于练习的设计,除两个实际问题和课本习题以外,我准备设计一道开放题,大致思路是在已画出斜边上的高的直角三角形中让学生尽量地找出线段之间的关系。

4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识的意识是有很大的促进的。

勾股定理 篇二

各位专家领导,上午好:

今天我说课的课题是《勾股定理的逆定理》

一、教材分析 :

(一)、本节课在教材中的地位作用

“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。

(二)、教学目标:

根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。

知识技能:

1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形

过程与方法:

1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程

2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用

3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

情感态度:

1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系

2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神

(三)、学情分析:

尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。

重点:勾股定理逆定理的应用

难点:勾股定理逆定理的证明

关键:辅助线的添法探索

二、教学过程:

本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。

(一)、复习回顾: 复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。

(二)、创设问题情境

一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。

(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)

因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。

这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。

接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。

在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。

(四)、组织变式训练

本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,字母代替了数字,绕了一个弯,既可以检查本课知识,又可以提高灵活运用以往知识的能力。第三题则要求更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。

(五)、归纳小结,纳入知识体系

本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。

(六)、作业布置

由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。A组是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。B组题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。

三、说教法、学法与教学手段

为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。

此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。

总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。

八年级数学《勾股定理》教案 篇三

一、教学目标

(一)教学知识点

1.掌握勾股定理,了解利用拼图验证勾股定理的方法。

2.运用勾股解决一些实际问题。

(二)能力训练要求

1.学会用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力。

2.在拼图过程中,鼓励学生大胆联想,培养学生数形结合的意识。

(三)情感与价值观要求

利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献。借助对学生进行爱国主义教育。并在拼图的过程中获得学习数学的快乐,提高学习数学的兴趣。

二。教学重、难点

重点:勾股定理的证明及其应用。

难点:勾股定理的证明。

三。教学方法

教师引导和学生自主探索相结合的方法。

在用拼图的方法验证勾股定理的过程中。教师要引导学生善于联想,将形的问题与数的问题联系起来,让学生自主探索,大胆地联系前面知识,推导出勾股定理,并自己尝试用勾股定理解决实际问题。

四。教具准备

1.每个学生准备一张硬纸板;

2.投影片三张:

第一张:问题串(记作1.1.2 A);

第二张:议一议(记作1.1.2 B);

第三张:例题(记作1.1.2 C).

五。教学过程

Ⅰ.创设问题情景,引入新课

[师]我们曾学习过整式的。运算,其中平方差公式(a+b)(a-b)=a2-b2;完全平方公式(ab)2=a22ab+b2是非常重要的内容。谁还能记得当时这两个公式是如何推出的?

[生]利用多项式乘以多项式的法则从公式的左边就可以推出右边。例如(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以平方差公式是成立的。

[生]还可以用拼图的方法来推出。例如:(a+b)2=a2+2ab+b2.我们可以用一个边长为a的正方形,一个边长为b的正方形,两个长和宽分别为a和b的长方形可拼成如下图所示的边长为(a+b)的正方形,那么这个大的正方形的面积可以表示为(a+b)2;又可以表示为a2+2ab+b2.所以(a+b)2=a2+2ab+b2.

勾股定理 篇四

知识结构:

重点、难点分析

本节内容的重点是及其应用。它可用边的关系判断一个三角形是否为直角三角形。为判断三角形的形状提供了一个有力的依据。

本节内容的难点是的应用。在用时,分不清哪一条边作斜边,因此在用判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方。

教法建议:

本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法。通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题。在课堂教学中营造轻松、活泼的课堂气氛。通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的。具体说明如下:

(1)让学生主动提出问题

利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来。这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容。所有这些都由学生自己完成,估计学生不会感到困难。这样设计主要是培养学生善于提出问题的习惯及能力。

(2)让学生自己解决问题

判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路。

(3)通过实际问题的解决,培养学生的数学意识。

教学目标:

1、知识目标:

(1)理解并会证明;

(2)会应用判定一个三角形是否为直角三角形;

(3)知道什么叫勾股数,记住一些觉见的勾股数。

2、能力目标:

(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力。

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过知识的纵横迁移感受数学的辩证特征。

教学重点:及其应用

教学难点:及其应用

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程:

1、新课背景知识复习(投影)

勾股定理的内容

文字叙述(投影显示)

符号表述

图形(画在黑板上)

2、逆定理的获得

(1)让学生用文字语言将上述定理的逆命题表述出来

(2)学生自己证明

逆定理:如果三角形的三边长 有下面关系:

那么这个三角形是直角三角形

强调说明:(1)勾股定理及其逆定理的区别

勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。

(2)判定直角三角形的方法:

①角为 、②垂直、③

2、  定理的应用(投影显示题目上)

例1 如果一个三角形的三边长分别为

则这三角形是直角三角形

证明:∵

∵∠C=

例2 已知:如图,四边形ABCD中,∠B= ,AB=3,BC=4,CD=12,AD=13求四边形ABCD的面积

解:连结AC

∵∠B= ,AB=3,BC=4

∴AC=5

∴∠ACD=

例3 如图,已知:CD⊥AB于D,且有

求证:△ACB为直角三角形

证明:∵CD⊥AB

又∵

∴△ABC为直角三角形

以上例题,分别由学生先思考,然后回答。师生共同补充完善。(教师做总结)

4、课堂小结:

(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。

5、布置作业 :

a、书面作业 P131#9

b、上交作业 :已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

求证:△DEF是等腰三角形

板书设计:

探究活动

分别以直角三角形三边为直径作三个半圆,这三个半圆的面积之间有什么关系?为什么?

提示:设直角三角形边长分别为

则三个半圆面积分别为

勾股定理的教案 篇五

一、教学目标

【知识与技能】

理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。

【过程与方法】

经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。

【情感、态度与价值观】

体会事物之间的联系,感受几何的魅力。

二、教学重难点

【重点】勾股定理的逆定理及其证明。

【难点】勾股定理的逆定理的证明。

三、教学过程

(一)导入新课

复习勾股定理,分清其题设和结论。

提问学生画直角三角形的方法(可用尺类工具),然后要求不能用绳子以外的工具。

出示古埃及人利用等长的。3、4、5个绳结间距画直角三角形的方法,以其中蕴含何道理为切入点引出课题。

(二)讲解新知

请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确

出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。

学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。

勾股定理的教案 篇六

教学目标

1、知识与技能目标

用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.

2、过程与方法

让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.

3、情感态度与价值观

在探索勾股定理的过程中,体验获得成功的快 乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久化的思想,激励学生发奋 学习.

教学重点:了结勾股定理的由,并能用它解决一些简单的问题。

教学难点:勾股定理的发现

教学准备:多媒体

教学过程:

第一环节:创设情境,引入新(3分钟,学生观察、欣赏)

内容:20xx年世界数学家大会在我国北京召开,

投影显示本届世界数学家大会的会标:

会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”

的图作为与“外星人”联系的信号.今天我们就一同探索勾股定理.(板书 题)

第二环节:探索发现勾股定理(15分钟,学生独立观察,自主探究)

1.探究活动一:

内容:(1)投影显示如下地板砖示意图,让学生初步观察:

(2)引导学生从面积角度观察图形:

问:你能发现各图中三个正 方形的面 积之间有何关系吗?

学生通过观察,归纳发现:

结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

2.探究 活动二:

由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

(1)观察下面两幅图:

(2)填表:

A 的面积

(单位面积)B的面积

(单位面积)C的面积

(单位面积)

左图

右图

(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)

(4)分析填表的数据,你发现了什么?

学生通过分析数据,归纳出:

结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

3.议一议:

内容:(1)你能用直角三角形的边长 、 、 表示上图中正方形的面积吗?

(2)你能发现直角三角形三边长度之间存在什么关系吗?

(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?

勾股定理(gou-gu theorem):

如果直角三角形两直角边长分别为 、 ,斜边长为 ,那么即直角三角形两直角边的平方和等于斜边的平方.

数学小史:勾股定理是我国最早发现的`,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.

第三环节: 勾股定理的简单应用(7分钟,学生合作探究)

内容:

例 如图所示,一棵大树在一次强烈台风中于离

地面10m处折断倒下,

树顶落在离树根24m处。 大树在折断之前高多少?

(教师板演解题过程)

第四环节:巩 固练习(10分钟,学生先独立完成,后全班交流)

1、列图形中未知正方形的面积或未知边的长度:

2、生活中的应用:

小明妈妈买了一部29英寸(74厘米)的电视机。 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得 一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?

第五环节:堂小结(3分钟,师生对答,共同总结)

内容:教师提问:

1.这一节我们一起学习了哪些知识和思想方法?

2.对这些内容你有什么体会?请与你的同伴交流.

在学生自由发言的基础上,师生共同总结:

1.知识:勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么 .

2.方法:① 观察—探索—猜想—验证—归纳—应用;

② 面积法;

③ “割、补、拼、接”法。

3.思想:① 特殊—一般—特殊;

② 数形结合思想.

第六 环节:布置作业(2分钟,学生分别记录)

内容:

作业:1.教科书习题1.1;

2.《读一读》——勾股世界;

3.观察下图,探究图中三角形的三边长是否满足 .

要求:A组(学优生):1、2、3

B组(中等生):1、2

C组(后三分之一生):1

板书设计:见电子屏幕

教学反思:

勾股定理的教案 篇七

教学课题:勾股定理的应用

教学时间(日期、课时):

教材分析:

学情分析:

教 学目标:

能运用勾股定理及直角三角形的判定条件解决实际问题.

在运用勾股定理解决实际问题的过程中,感受数学的“转化” 思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值.

教学准备

《数学学与练》

集体备课意见和主要参考资料

页边批注

教学过 程

一. 新课导入

本课时的教学内容是勾股定理在实际中的应用。除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。比如,把课本例2改编为开放式的问题情境:

一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流 .

创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的☆www.☆主体性;这样的问题学生常常会从自己的生活经验出发,产生不同的思考方法和结论(教学中学生可能的结论有:底端也滑动 0.5m;如果梯子的顶端滑到地面 上,梯子的顶端则滑动8m,估计梯子底端的滑动小于8m,所以梯子的顶端 下滑0.5m,它的底端的滑动小于0.5m;构造直角三角形,运用勾股定理计算梯子滑动前、后底端到墙的垂直距离的差,得出梯子底端滑动约0.61m的结论等);通过与同学交流,完善各自的想法,有利于学生主动地把实际问题转化为数学问题 ,从中感受用数学的眼光审视客观世界的乐趣 .

二. 新课讲授

问题一 在上面的情境中,如果梯子的顶端下滑 1m,那么梯子的。底端滑动多少米?

组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导.

问题二 从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流.

设计问题二促使学生能主动积 极地从数学的角度思考实际问题.教学中学生可能会有多种思考.比如,①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;②因为梯子顶端 下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。教学中不要把寻找规律作为这个探索活动的目标,应让学生进行充分的交流,使学生逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法.

3.例题教学

课本的例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题2.7第4题作为补充例题.通过这个问题的讨论,把“32+b2=c2”看作一个方程,设折断处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一元二次方程32+x2=(10—x)2,从中可以让学生感受数学的“转化”思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智.

三. 巩固练习

1.甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走了6km,这时甲、乙两人相距__________km.

2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是( ).

(A)20cm (B)10cm (C)14cm (D)无法确定

3.如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m.求这块草坪的面积.

四. 小结

我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角 三角形中的任意两边就可以依据勾股定理求出第三边.从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2+b2=c2”看成一个方程,只要 依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程.

标签: #勾股定理 #直角三角形 #数形结合